The Observation of ¹J(¹⁸⁷Os-H) Coupling in the ¹H Nuclear Magnetic Resonance Spectra of Some Osmium Hydrides

By B. E. Mann, C. Masters, and B. L. Shaw* (School of Chemistry, The University, Leeds LS2 9 [T)

Summary ¹ J(¹⁸⁷Os-H) has been observed for the complexes OsH₄(PEt₂Ph)₃, OsH₄(AsEt₂Ph)₃, and a species believed to be OsH₆(AsEt₂Ph)₂.

ALTHOUGH osmium has a naturally-occurring isotope with nuclear spin one half (187Os, 1.64% abundant), nuclear spin-spin couplings to osmium have not previously been reported. We have now measured ¹ I(187Os-H) for three complexes, OsH₄(PEt₂Ph)₃, OsH₄(AsEt₂Ph)₃, and a species that we have not isolated or characterized, but believe to be OsH₆(AsEt₂Ph)₂. The first two complexes were prepared by the sodium borohydride reduction of OsCl₂(PEt₂Ph)₃ or OsCl₂(AsEt₂Ph)₃, respectively, under mild conditions, as previously described.1 These two complexes have been fully characterized. The sodium borohydride reduction of OsCl₃(AsEt₂Ph)₃ under more vigorous conditions (reflux in tetrahydrofuran) gave OsH₄(AsEt₂Ph)₃ mixed with a second hydride, believed to be $OsH_6(AsEt_2Ph)_2$. We have previously described OsH₆(PMe₂Ph)₂.1

The n.m.r. data are given in the Table. The reduced coupling constants^{2,3} ¹K(¹⁸⁷Os-H) are also given in the

Table and may be compared with reduced coupling constants for hydrides of tungsten(VI) (188W, $I = \frac{1}{2}$)4 and platinum(II) (195Pt, $I = \frac{1}{2}$). As would be expected ${}^{1}K({}^{187}Os-H)$ lies between ${}^{1}K({}^{183}W-H)$ and ${}^{1}K({}^{195}Pt-H)$.

¹H(hydride) n.m.r. data for some osmium, tungsten, and platinum hydrides (in benzene solution)

	$ au \mathrm{H}$	¹ <i>J</i> (M−H) Hz	$^{1}K(M-H) \times 10^{-20}cm^{-3}$
OsH ₄ (PEt ₂ Ph) ₃	 21.84	30.8	445
OsH ₄ (AsEt ₂ Ph) ₃	 20.42	34.0	492
$OsH_6(AsEt_2Ph)_2$?	 19.60	33.0	477
$WH_6(PEt_2Ph)_3^a$	 11.94	27.8	239
trans-PtHX(PEt3)2b	 17.6 - 33.6	780-1370	1220 - 2100
(X = anion)			

^a Data calculated from ref. 4.

We thank the S.R.C. and Imperial Chemical Industries Ltd. for financial support.

(Received, June 17th, 1970; Com. 937.)

P. G. Douglas and B. L. Shaw, J. Chem. Soc. (A), 1970, 334.
J. A. Pople and D. P. Santry, Mol. Phys., 1964, 8, 1.
W. McFarlane, Quart. Rev., 1969, 23, 187.
J. R. Moss and B. L. Shaw, Chem. Comm., 1968, 632.
J. P. Moss and B. L. Shaw, Chem. Comm., 1968, 232.

⁵ J. Powell and B. L. Shaw, J. Chem. Soc., 1965, 3879.

b Data calculated from ref. 5.